Closing Thu: Taylor Notes 4, 5
Final is Saturday, March 12
5:00-7:50pm, KANE 130
Eight pages covers everything

TN 5: Using Taylor Series

Idea: Manipulate the 6 series we now know to get other series. Within the interval of convergence, we can

1. Substitute (replace x by something else)
2. Integrate; note that

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

3. Differentiate; note that

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}+C
$$

4. Combine; note that

$$
\sum_{k=0}^{\infty} k x^{k}-3 \sum_{k=0}^{\infty} \frac{1}{k!} x^{k}=\sum_{k=0}^{\infty}\left(k-\frac{3}{k!}\right) x^{k}
$$

Here are the 6 series we know and can quote: Recall: For the following we have the open interval of convergence: $-\infty<x<\infty$ $e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$
$\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}$
$\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}$

And for these we have the
open interval of convergence: - $1<x<1$
$\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}$
$-\ln (1-x)=\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1}$,
$\arctan (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}$

Substitution Questions

Find the Taylor series based at $\mathrm{b}=0$ (and give the interval of convergence for each) of
(a) $f(x)=3 e^{2 x}$
(b) $g(x)=\frac{5}{1-4 x}$
(c) $h(x)=\frac{3}{2 x+1}$

Combining and Working with sums
Find the Taylor series based at $b=0$ (and give the interval of convergence for each) of
(a) $y=7+3 x^{5} e^{2 x}$
(b) $y=\frac{5}{1-4 x}-\frac{3}{2 x+1}$
(c) $y=\cos ^{2}(x) \quad$ (Big hint: Half-angle)

Integrating
(a) Give the first three nonzero terms of the Taylor Series for

$$
\int_{0}^{x} 7+3 t^{5} e^{2 t} d t
$$

(b) Find a Taylor series for (this is from HW):

$$
A(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

1. What is $A^{\prime}(x)$?
2. Give the Taylor series for $\sin (t)$ based at 0 .
3. What can you say about $\sin (\mathrm{t}) / \mathrm{t}$?
4. Integate.
